

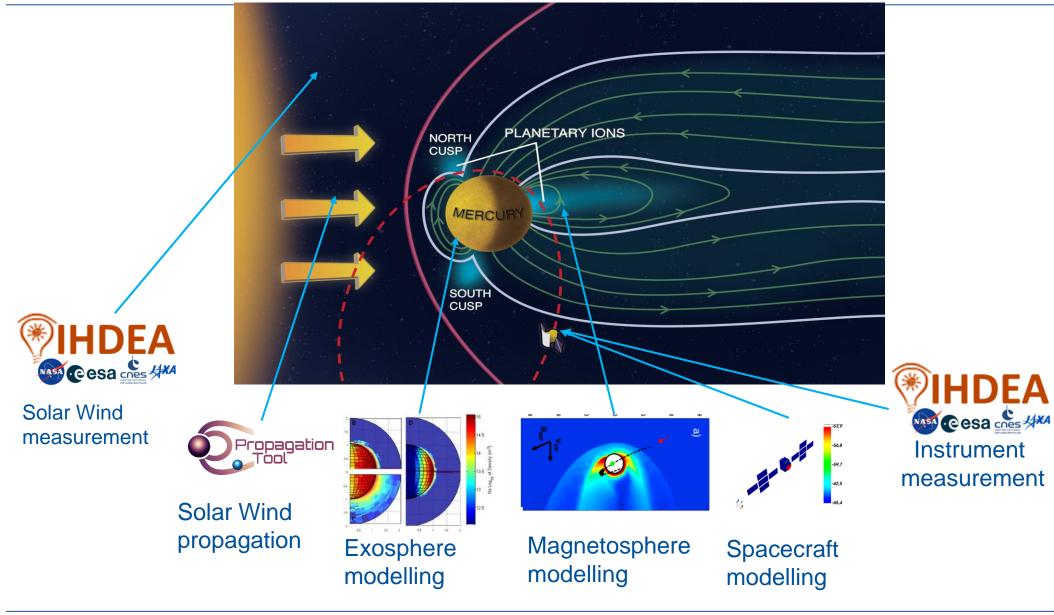
Coupling numerical simulation codes and space environment databases thanks to SPASE

IHDEA meeting– October 2023

S. Hess¹, L. Leclercq¹, N. André², B. Cecconi³

¹ ONERA, Dept. Physics, Toulouse France ² IRAP, CNRS-UPS-CNES, Toulouse, France

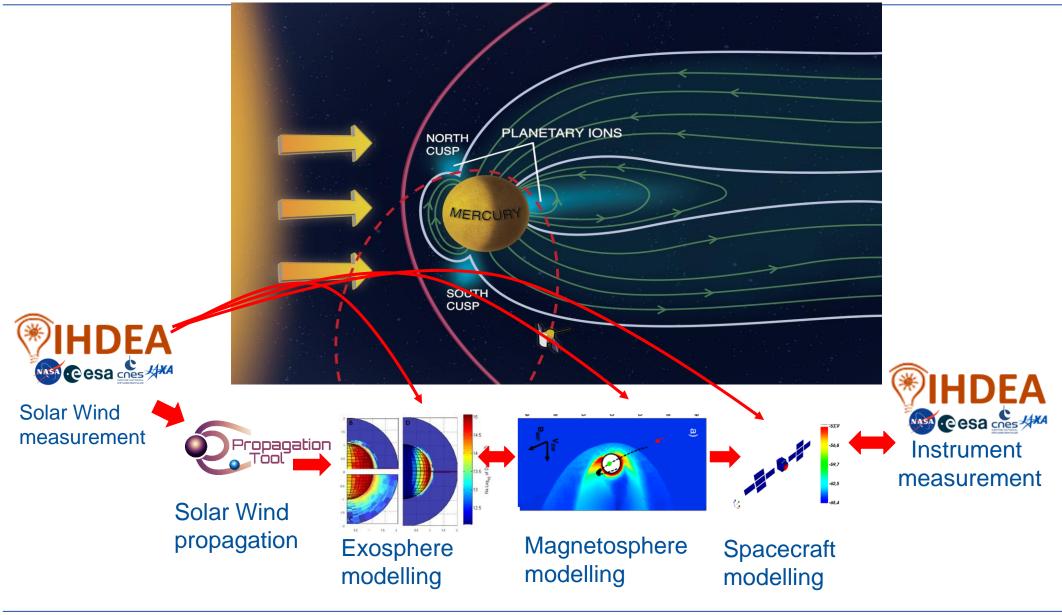
³ Observatoire de Paris-PSL, CNRS, Paris , France



The Europlanet-2024 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 871149.

Commission européenne

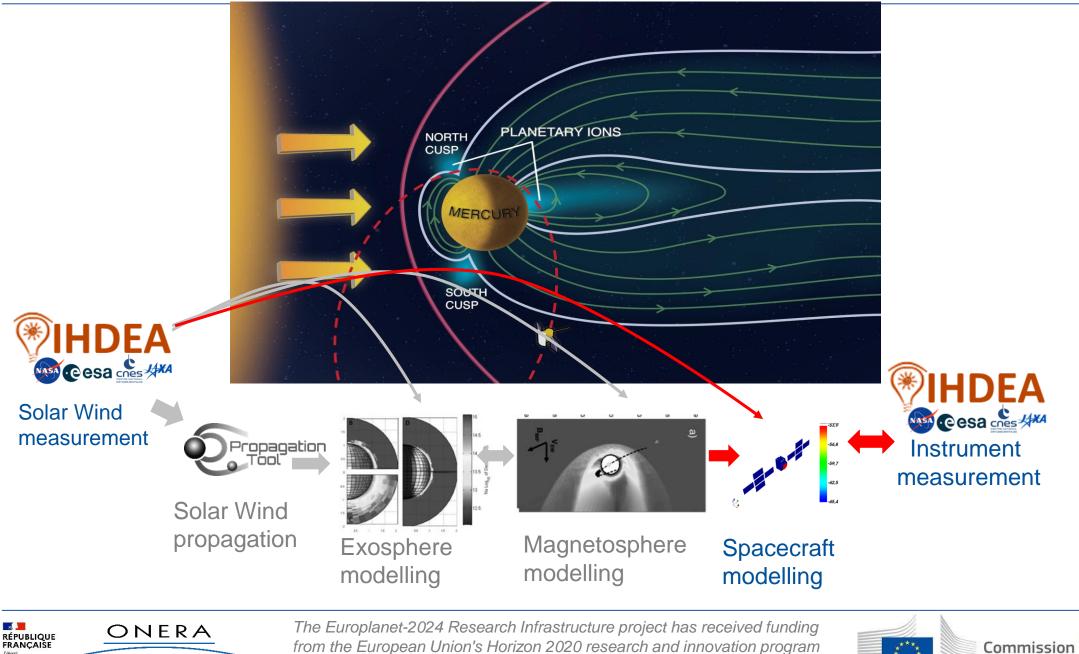
Context: The Sun Planet Digital Environment work package of the Europlanet 2024 Research Infrastucture


The Europlanet-2024 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 871149.

Commission

européenne

Context: The Sun Planet Digital Environment work package of the Europlanet 2024 Research Infrastucture



The Europlanet-2024 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 871149.

Commission

européenne

Context: The Sun Planet Digital Environment work package of the Europlanet 2024 Research Infrastucture

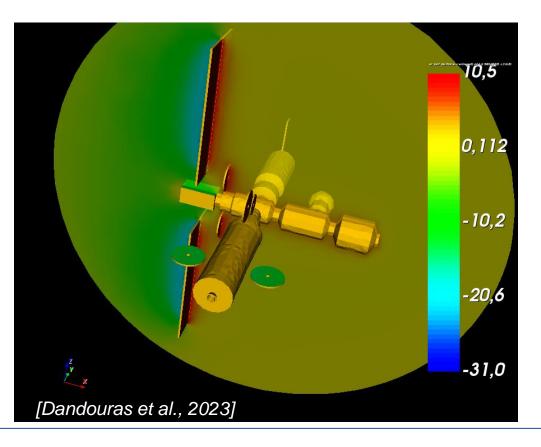
THE FRENCH AEROSPACE LAB

Liberté Égalitó Fraternitó

from the European Union's Horizon 2020 research and innovation program under grant agreement No 871149.

européenne

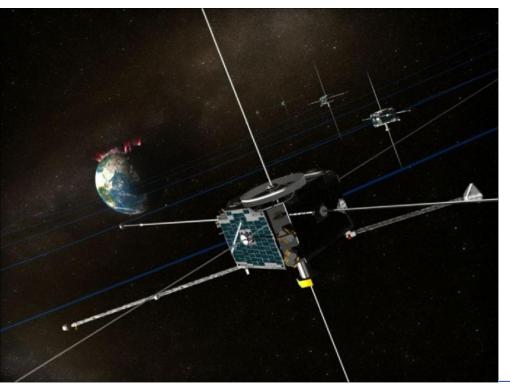
Context: The Spacecraft-Plasma Interaction Software (SPIS)

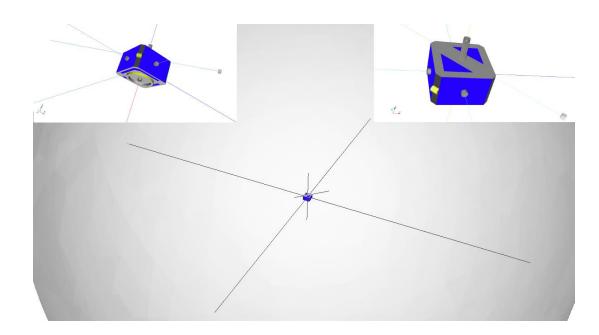

• Simulates the charge state and the plasma environment of spacecraft

geometry + materials + plasma conditions \rightarrow charge state + local plasma environment

- Multi-physics (plasma, radiations, dusts, contamination, erosion,...), i.e. multiple sub-models
- Open-source, developed by ONERA and Artenum,

with support of ESA and CNES

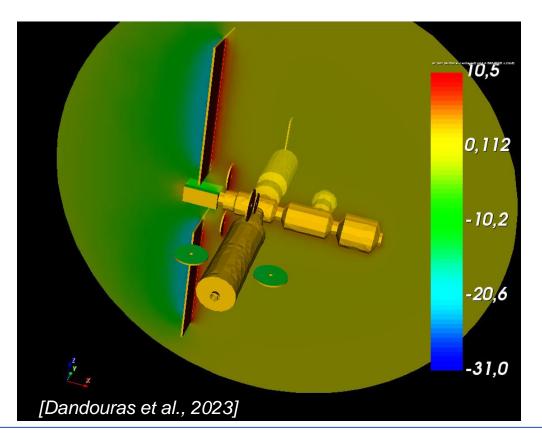

- Originally used by industrials for platform electrostatic risk assessment
- More and more used for charging impact on science instruments, pre-calibration and data analysis



Context: Simulation of THEMIS-B

- To illustrate the new capabilities of SPIS, we perform a simulation of the THEMIS-B spacecraft
- The NASA THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission was to explore the Earth magnetosphere, providing both temporal and spatial resolution though the use of 5 similar spacecraft
- THEMIS spacecraft is meter-sized with 4 ~20 meters antennae + 2 3 meter antennae. The spacecraft has a full instrument suite to measure environment electromagnetic fields and particle distributions.

Context:The Spacecraft-Plasma Interaction Software (SPIS)


• Simulates the charge state and the plasma environment of spacecraft

geometry + materials + plasma conditions → charge state + local plasma environment

- Multi-physics (plasma, radiations, dusts, contamination, erosion,...), i.e. multiple sub-models
- Open-source, developed by ONERA and Artenum,

with support of ESA and CNES

- Originally used by industrials for platform electrostatic risk assessment
- More and more used for charging impact on science instruments, pre-calibration and data analysis
- Can simulate instrumental observations, but needs accurate environment description as input

Introduction and Conclusion (in case some fall asleep)

- Multi-physics simulation of science instruments/mission interactions with the environment with SPIS
 - estimate charging levels in actual environments
 - estimates the impact on science instrument (pre-calibration, data inversion...)
- We interface SPIS with SPASE to access instrument measurements databases
 - Use of webservices (AMDA, CDAWeb, Vespa) for registry and data access
 - direct access to HPDE repository for metadata
- We demonstrate:
 - SPASE allows a lot of automated pre-filtering of relevant data with correctly filled metadata
 - Software can easily find and interpret data files from different origin and import the data

but: - need an API to list and filter HPDE registry content

- need an (H)API to get the required data in a standardized way

• Metadata are not only meant to put your data in large registry, they can facilitate the life of the people working with your data, allowing their handling by tools following the standards

• Tools are not intelligent, the more accurate the metadata, the more powerful can be the tools

The Space Physics Archive Search and Extract (SPASE)

- Data model (Standardized description) developed for 15+ year by an international alliance
- Targets heliosphere, magnetosphere and plasma environment physics
- Provide a standardized way of describing:
 - which datasets exist, what they are about
 - how they were acquired (mission, instrument, people...)
 - where (not how) to find them, under which format
 - what their content is (meaning, unit, field ID...)
- Human readable AND machine actionable description of the data file content
 - metadata to identify and order/filter the resources
 - metadata keywords to identify the physics meaning of data fields
- Question:
 - Make the tool recognize the fields it can use
 - Automated match available / requested data with SPIS I/O ?

Ingestion of data in SPIS: find the available data (first issue)

- Access all resources registered @ NASA's Heliophysics Data Environment Portal
- No registry API:
 - impossible to list the available data:

downloading and parsing the 16000+ XML files is not a good option!

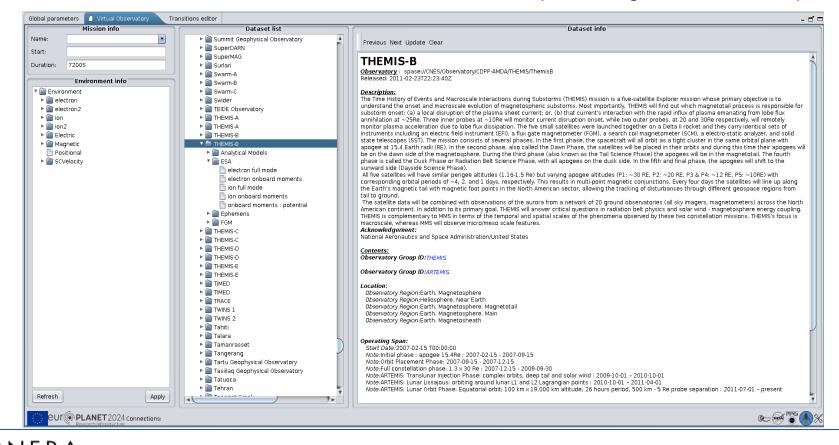
- impossible to order the data

relying on the ID parsing (folder like) is not a good option think at how many hours you lost looking for which folder contains the data you want! folder ordering unreliability is exactly why data model were invented do not try to override the SPASE description by defining ResourceID guidelines!

 To overcome these issues, we built on the VESPA portal from Observatoire de Paris to generate a SPASE registry API based on the EPN-TAP standard

Ingestion of data in SPIS: find the available data (first solution)

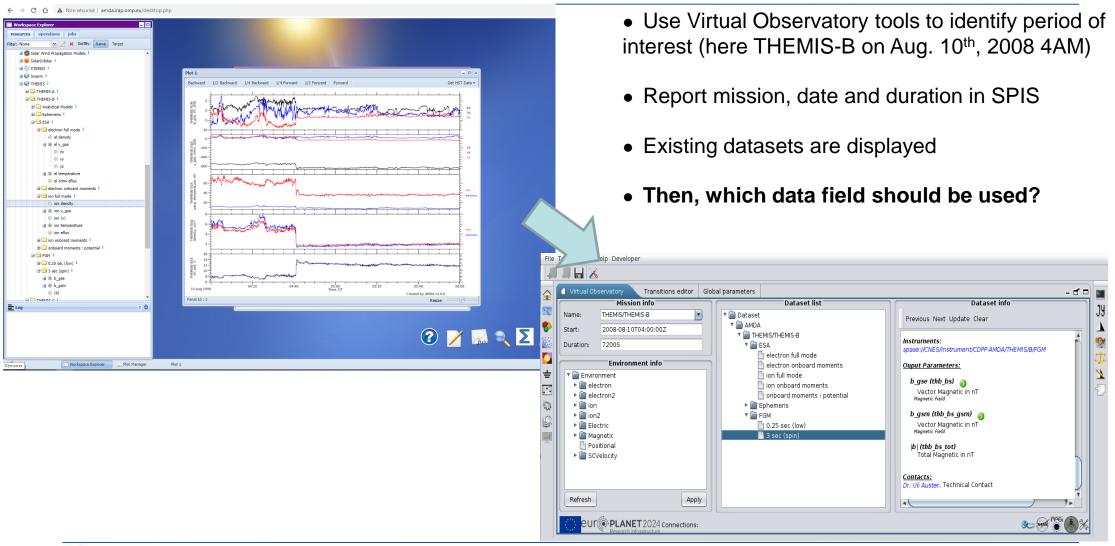
 To overcome these issues, we built on the VESPA portal from Observatoire de Paris to generate a SPASE registry API based on the EPN-TAP standard


VESPA Virtual European Sol	ar and Planetary Access							🛛 Help
Refine your search ADOL C	Duery Back To Ser	vices l	Results					
Main Parameters	Results in s	ervice	spase_v	respa				
Target Name	spase_vespa Service descriptio		vided					
Target Class Dataproduct Type	Column visibility Select All in curren	Show all	Hide all Reset Selectio	n				
Instrument Host Name	granule_uid			1	dataproduct_type	ļ1	granule_gid 🕼	obs_id
spase://SMWG/Observatory/THEMIS/B	spase://NASA/Num	nericalData	THEMIS/B/SS	T/PT3S	spectrum#catalogu	e_item#cube	NumericalData	spase://NASA/NumericalData
Instrument Name	spase://NASA/Num	nericalData	THEMIS/B/SC	CM/PT0.125S	time_series#catalo	gue_item	NumericalData	spase://NASA/NumericalData
= •	spase://NASA/Num	nericalData	THEMIS/B/MO	DM/PT3S	catalogue_item#cu	be	NumericalData	spase://NASA/NumericalData
Processing level	spase://NASA/Num	nericalData	THEMIS/B/He	lioWeb/Ephemeris/P1D	time_series#catalo	gue_item	NumericalData	spase://NASA/NumericalData
	spase://NASA/Num	nericalData	THEMIS/B/GN	MOM/PT3S	time_series#catalo	gue_item#cube	NumericalData	spase://NASA/NumericalData
	spase://NASA/Num	nericalData	THEMIS/B/Fit	s/PT3S	time_series#catalo	gue_item	NumericalData	spase://NASA/NumericalData
Time	spase://NASA/Num	nericalData	THEMIS/B/FF	T/PT0.0556S	spectrum#catalogu	e_item	NumericalData	spase://NASA/NumericalData
Location	spase://NASA/Num	nericalData	THEMIS/B/FB	K/PT4S	spectrum#time_se	ies#catalogue_item	NumericalData	spase://NASA/NumericalData
Spectral	spase://NASA/Num	nericalData	THEMIS/B/ES	A/PT3S	catalogue_item#cu	be	NumericalData	spase://NASA/NumericalData
Illumination	spase://NASA/Num	nericalData	THEMIS/B/ES	A.FGM/PT96S	time_series#catalo	gue_item#cube	NumericalData	spase://NASA/NumericalData
Data Reference	spase://NASA/Num	nericalData	THEMIS/B/Ep	hemeris/SSCWeb/PT1	1 time_series#catalo	gue_item	NumericalData	spase://NASA/NumericalData
	spase://NASA/Num	nericalData	THEMIS/B/Ep	hemeris/PT01M	time_series#catalo	gue_item	NumericalData	spase://NASA/NumericalData
Granule UID	spase://NASA/Num	nericalData	THEMIS/B/EF	I/PT3S	time_series#catalo	gue_item	NumericalData	spase://NASA/NumericalData
	spase://DLR/Nume	ricalData/T	HEMIS/B/FGN	//PT0.0078125S	time_series#catalo	gue_item	NumericalData	spase://DLR/NumericalData/1
Granule GID	4							

• SPIS uses the webservice API

Ingestion of data in SPIS: find the available data

- To overcome these issues, we built on the VESPA portal from Observatoire de Paris to generate a SPASE registry API based on the EPN-TAP standard
- SPIS uses the webservice API to list and order resources, then use hpde.io to get SPASE description



RÉPUBLIQUE FRANÇAISE Librit Épitat Fransité

ONERA THE FRENCH AEROSPACE LAB

SPIS connection to Virtual Observatories

Ingestion of data in SPIS: select the datasets of interest

SPIS connection to Virtual Observatories

Ingestion of data in SPIS: find and select data of interest Data fields/ SPIS inputs description

 SPASE <numericaldata> describe the content of datasets:</numericaldata> 	 Data Content description 				
- with a type (Particle, Fields,)	- Name				
with a physical quantity (density ourrant)	- Key				
 with a physics quantity (density, current) 	- Quantity				
 with supporting qualifiers (vector/scalar, average/peak) 	- Qualifier				
Renaming in v2.6.0?	- Unit				
 SPIS <simulationmodel> defines environment inputs</simulationmodel> 	- Туре				
- Particles:	 Simulation input description 				
- Density (Quantity:NumberDensity)					
- Velocity (Quantity:Velocity; Qualifiers: Vector)	- Name				
- Temperature (Quantity: Temperature)	- Label				
- Field:	- Quantity				
- Electric (Quantity:Electric ; Qualifiers: Vector)	- Quantity				
- Magnetic (Quantity:Magnetic; Qualifiers: Vector)	- Qualifier				
- Positional (for use with simulated environment)	- Unit				

CONERA RÉPUBLIQUE FRANÇAISE Lident Againi Française Lident Againi The French aerospace Lab

SPIS connection to Virtual Observatories

14

Ingestion of data in SPIS: find and select data of interest

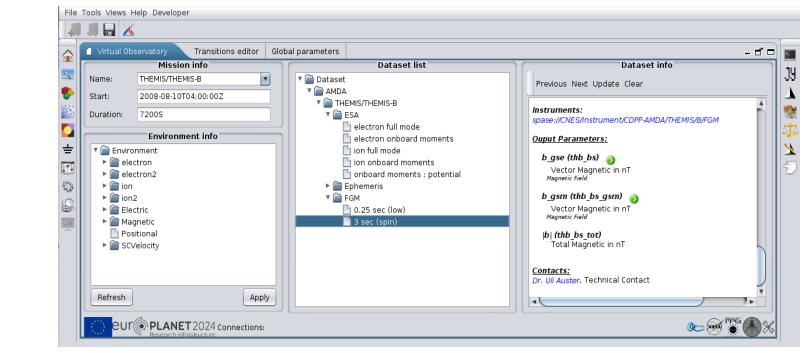
Data fields/ SPIS inputs comparison

How to compare output parameters and input properties?	 Data Content description
- List pertinent fields	- Name
- Pair them when possible $ ightarrow$ no equivalent of type!	- Key
- Weight the comparable pairs	- Quantity
Quantity must be identical	- Qualifier
Unit must be convertible	- Unit
 Qualifier must match as much as possible 	- Туре
Name matching is not reliable	Simulation input description
 Key matching even less (unless further specifications) 	-Name
• Even though Qualifier comparison may not be perfect match, dimension information may be important and/or required (Scalar, Vector, Tensor,)	n - Label
 Value Range can be matched if specified (MinValue, MaxValue) 	- Quantity
• Exact matching cannot be ensured, user final inspection required anyway.	- Qualifier
• Exact matching cannot be ensured, user mar inspection required anyway.	- Unit

15

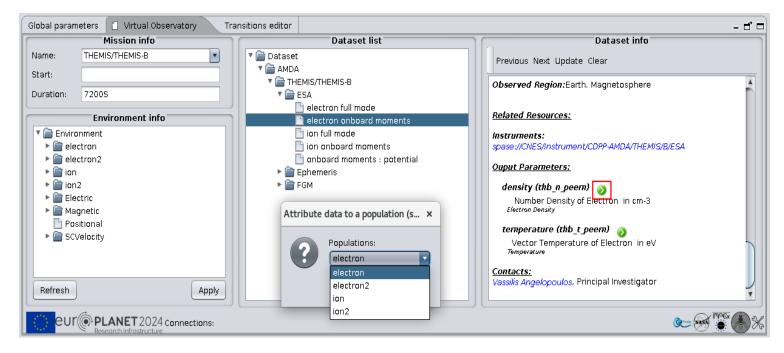
Ingestion of data in SPIS: find and select data of interest

Select SPIS model based on available data


 SPIS is multi-physics / multi-models and modular 	 Data Content description
 each model described by a <simulationmodel></simulationmodel> 	- Name
	- Key
 use AssociationType::PartOf to define submodels 	- Quantity
 use AssociationType::DeriveFrom to define submodels extension 	- Qualifier
PopulationModel part of SPIS	- Unit
MaxwellianPopulation derive from Population Model	- Туре
	 Simulation input description
• Madala may require different input (detailed in SimulationMedalyIpputDreparties)	- Name
 Models may require different input (detailed in SimulationModel::InputProperties) 	- Label
	- Quantity
• Model selection by user, but SPIS can help by checking which models can be set give	iven - Qualifier
the available inputs (in development)	- Unit

SPIS connection to Virtual Observatories

Ingestion of data in SPIS: find and select data of interest THEMIS examples


- Magnetic Field example:
 - SPIS search for a data description defined as a Field, magnetic qualified as a vector (SPIS is 3D)
 - Two possible matches found for Themis FGM
 - Magnetic field magnitude discarded (not a vector)

Ingestion of data in SPIS: find and select data of interest THEMIS examples

- Particle example:
 - density, velocity and temperature found... for which population?
 - SPASE allows some simple description (e-, H+, α , ions, dusts....)
 - SPIS ask the user to attribute the data to a population, with a pre-election based on SPASE

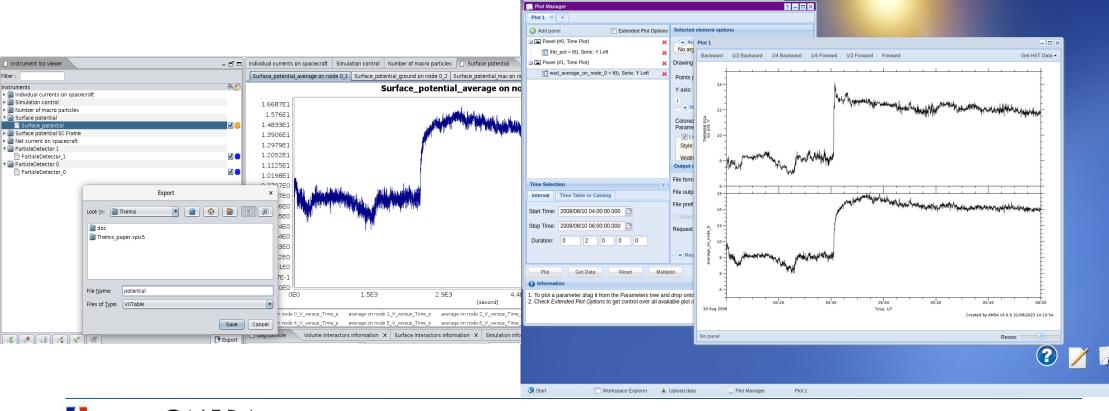
Import the data and run

(second issue& solution)

- Once selected, the data must be imported.
- Many ways of accessing the data
- SPASE give many hints as of HOW to get the data (AccessInformation)
 - But the actual request to service is not described
 - The tool needs to know each providers/gateway formalism to get the data
 - HAPI is a solution for time series
- SPIS implements interfaces to AMDA and CDAWeb for data request

Import the data and run

- Once selected, the data can be imported to SPIS which knows from SPASE who to ask and how
- The imported data are used for the simulation, in which they can be monitored


sitions editor 🔲 Global parameters	s Virtual Observatory			
fined parameters: globalParameters-5.1	-5.1.0_modified.xml			
Plasma Surface Interactions Transition:	ons Snacecraft Outputs Pois	sson equation Volume Interactions B Field Simula	tion control Scenario	
Vame		Value	Unit	Description
avPartNbPerCell	Type double	2.0	None	Description
avraitivoreiteii	series	Edit	nT	(sur altair) _
BFieldIterativePusher	int	0	None	File
bPertNbPerSurf	int	20	None	Metadata
chargeDepositDuringIntegrationFlag	int	20	(-)	Row count 2,395
elec1DensTable	series	Edit	cm-3	
elec1TempTable	series	Edit	eV	Column count 4
electronDensity	double	100000.0	[m-3]	
electronDensity2	double	0.0	[#/m3]	
electronDensityCutoff	double	0.0	(m-3)	Series 0 Series 1 Series 2 Serie
electronDistrib	String	KineticMaxwellBoltzmannVolDistrib	None	
electronDistrib2	String	PICVolDistrib	None	[S] [eV] [eV] [eV]
electronDt	double	1.0E-6	[5]	1 0.0 12.1871 11.7712 13.59
electronDt2	double	1.0E-6	[8]	2 2.595 12.1871 11.7712 13.59
electronDuration	double	1.0E-6	[S]	3 5.602 12.2079 11.6652 13.61
electronDuration2	double	1.0E-6	[8]	4 8.609 12.0573 11.6136 13.73
electronTemperature	double	1.0	[eV]	5 11.617 12.0653 11.614 13.73
electronTemperature2	double	100.0	[eV]	6 14.624 11.9759 11.5546 13.75
electronVx	double	0.0	[m/s]	7 17.631 11.9163 11.5968 13.68
electronVx2	double	0.0	[m/s]	8 20.638 11.689 11.4356 13.12
electronVy	double	0.0	[m/s]	9 23.644 11.8403 11.4081 13.00
electronVv2	double	0.0	[m/s]	10 26.651 11.9797 11.6195 12.72
electronVz	double	0.0	(m/s)	11 29.658 11.8922 11.5325 12.77
electron/vz2	double	0.0	[m/s]	
environmentType	String	TimeDependentSCVelocity	[iii o]	12 32.665 11.8445 11.4772 12.64
ExtendedPopNbr	int	0	None	13 35.671 11.8042 11.3965 13.04
IonDensity	double	1000000.0	[m-3]	14 38.678 11.8423 11.5079 13.29
ionDensity ionDensity2	double	0.0	[m-3] [#/m3]	15 41.686 11.9484 11.6235 13.06
,		0.0 PICVolDistribUpdatable	(#/m3) None	16 44.693 11.8938 11.4414 13.04
ionDistrib2	String	PiCVolDistribupdatable	None	17 47.7 11.7708 11.4838 12.97
	String	1.0E-4	(s)	18 50.707 11.9628 11.6729 12.91
ionDt	double		.,	19 53.713 11.9859 11.5193 12.83
ionDt2 ionDuration	double	1.0E-4 1.0E-4	[S] [S]	
onDuration	double	1.0E-4	[8]	

SPIS connection to Virtual Observatories

Import, run and export

- Once selected, the data can be imported to SPIS which knows from SPASE who to ask and how
- The imported data are used for the simulation, in which they can be monitored
- Some instruments results can be exported in VOTable with SPASE description for use in databases, tools

Conclusion

- Multi-physics simulation of science instruments/mission interactions with the environment with SPIS
 - estimate charging levels in actual environments
 - estimates the impact on science instrument (pre-calibration, data inversion...)
- We interface SPIS with SPASE to access instrument measurements databases
 - Use of webservices (AMDA, CDAWeb, Vespa) for registry and data access
 - direct access to HPDE repository for metadata
- We demonstrate:
 - SPASE allows a lot of automated pre-filtering of relevant data with correctly filled metadata
 - Software can easily find and interpret data files from different origin and import the data

but: - need an API to list and filter HPDE registry content

- need an (H)API to get the required data in a standardized way

• Metadata are not only meant to put your data in large registry, they can facilitate the life of the people working with your data, allowing their handling by tools following the standards

• Tools are not intelligent, the more accurate the metadata, the more powerful can be the tools

